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We aim to acquire the main dynamic equations in large arteries which are realistic and can
be utilized to solve hemodynamic problems. The four momentum equations of the elastic
vessel system and the enclosed blood system, both in the axial and in the radial directions, are
derived directly from Newton’s law, with the contact forces between the two systems being
counted explicitly. The resultant generalized axial momentum equations for large arteries in
vivo can be used to replace the Navier-Stokes equation for the blood axial motion. We also
analyze that the inertial and the longitudinal extending stress terms in the radial equation
of motion for the vessel system are two important governing terms. By retaining them
simultaneously, an ordinary pressure-radius (PR) wave equation is directly obtained from the
two resultant radial momentum equations. According to some physiological facts, we deduce
that the ventricular output mainly induces the arterial radial motion. We conclude that the
PR wave equation, with low dissipation character, is the primary realistic wave equation that
can be utilized as a basis to develop quantitative methods to study cardiovascular diseases
in a collective manner, such as the diagnosis and treatment in traditional Chinese medicine.
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I. INTRODUCTION

Seeking better methods for preventing and curing human diseases, many physicists,
mathematicians and engineers have been dedicated to the investigation and modeling of
the mechanism in large arteries for centuries. In 1755, the Euler equation [1] was first
constructed to describe blood flow in a tube. Since then, almost all of the physical and
mathematical modeling of pulse wave propagation have been constructed based on general
fluid dynamical principles, by considering the conservation of mass and the Navier-Stokes
(NS) equations for the fluid system [2–5]. The elastic vessel was taken into account as the
boundary conditions for the enclosed fluid.

The NS equations came up from applying Newton’s second law to a viscous fluid
system that is driven mainly by the gradient of the hydraulic pressure forces. The equations
are mostly used to solve the problem for hydraulic systems enclosed by boundaries which
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are stationary or with known movement. However, these are not the situations for a blood
system enclosed by elastic arterial vessels. Due to the arterial pressure wave, the vessel
is performing a distributed radial oscillatory motion which can be known only after the
pressure wave problem has been solved. Hence, utilizing the NS equations or their modified
forms becomes a complicated method for studying the blood motion in arterial systems.
Therefore, in order to describe the blood flow and the pressure wave propagation in large
arteries realistically, launching a different approach is needed.

Going back to Newton’s second law is the fundamental way to bring the hemody-
namic studies to the right track. To avoid dealing with the interacting forces on the blood
system by the elastic vessel, previously we have applied Newton’s law by taking the vessel
and the fluid together as one system, and some results that can explain many important
physiological phenomena have been found [6–10].

The aim of this study is to develop rigorous and general dynamic equations in large
arteries which can be widely accepted and utilized as a bases for solving the hemodynamic
problems. In order to elucidate the distinction of the results from the established dynamic
equations in the literature, we follow the common approaches by taking the fluid and
the wall as two separate systems. However, the interaction of the two systems is not
treated merely as the mutual boundary conditions but will be counted directly with the
mutual contact forces. Furthermore, the momentum equations of the two systems will be
tackled in both the axial and the radial directions. The interacting forces between the
two systems in both directions are then revealed explicitly, and a realistic pressure wave
equation automatically follows.

II. METHOD

To study the dynamic equations in large arteries, we first considered the general mo-
mentum equations for a rotationally symmetric fluid-filled elastic tube. Figure 1 illustrates
a segment of an artery embedded in a surrounding with external pressure Pe. We assumed
that the internal fluid pressure Pi and the inner radius R, induced by the pulsatile blood
input from the left ventricle, are functions of the axial position z and the time t. An ele-
ment of azimuth angle dθ was taken from the segment of axial length dz (Figure 1), and
the motions of the vessel element (see Figure 2a), as well as the wedge-shaped fluid element
(see Figure 2b), were considered separately.

II-1. Momentum equations for the vessel element

The vessel element (see Figure 2a) is in contact with the four neighboring elastic
walls (via surfaces I, II, III, and IV), the external surrounding (via surface V), and the
enclosed wedge-shaped blood element (via surface BW). Newton’s momentum equations
of this vessel element are determined by the forces acting on these six surfaces and the
damping force associated with its movement.

The vessel is assumed to be isotropic and incompressible, with thickness hw and den-
sity ρw. Following the conservation law for the mass of the wall, Rhw is constant [11]. Eθθ,
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FIG. 1: A segment of the fluid-filled artery embedded in a surrounding with external pressure Pe.
The internal fluid pressure Pi and inner radius R are functions of axial position z and time t.

Ezz, and Erz are its circumferential, longitudinal, and shearing Young’s moduli, respec-
tively.

The areas of surfaces I (at z) and II (at z+dz) can be expressed as AI = AII = hwRdθ.
The shearing stress in the radial direction is associated with the shearing strain ∂R

∂z as

σrz = Erz
∂R
∂z . The net radial shearing force FS acting on the surfaces I and II of the vessel

element by the neighboring adjacent vessels would then be

FS =

[
hwRdθErz

∂R

∂z

]
II

−
[
hwRdθErz

∂R

∂z

]
I

= ErzhwRdθ
∂2R

∂z2
dz. (1)

In vivo, the longitudinal tension along the large arteries is high [12–14]. The radial compo-
nent of the longitudinal stress T is given by Tr = T (∂R/∂z). The axial component of the

tension T is given by Tz = T
[
1− (∂R∂z )

2
]1/2 ∼= T

[
1− 1

2(
∂R
∂z )

2
]
.

The net longitudinal stress force in the radial direction (FT )r and in the axial direction
(FT )z acting on the surfaces I and II of the vessel element by the neighboring adjacent vessels
would then be

(FT )r =

[
ThwRdθ

∂R

∂z

]
II

−
[
ThwRdθ

∂R

∂z

]
I

= ThwRdθ
∂2R

∂z2
dz, (2)

(FT )z = −ThwRdθ
∂2R

∂z2
∂R

∂z
dz. (3)

Surfaces III and IV have areas AIII = AIV = hwdz. For a vessel with circumferential
extending strain eθθ = ∆R/R, the circumferential extending stress is σθθ = Eθθ∆R/R.
The net circumferential extending force FC acting on the surfaces III and IV of the vessel
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FIG. 2: The vessel element (a) and the wedge-shaped fluid element (b) of axial length dz and
azimuth angle dθ, taken from the arterial segment shown in Figure 1. V is the upper surface. BW
is the contact surface of the blood fluid and the vessel.

element by the neighboring adjacent vessels is in the radial direction and can be expressed
as

FC = −2σθθhwdz sin(dθ/2) ∼= −hwσθθdzdθ. (4)

On the surface V with area AV = Rdθdz (see Figure 2a), the external pressure acts as a
pressure force FO = PeAV normal to the surface, and its radial component (FO)r and axial
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component (FO)z are

(FO)r = FO

[
1−

(
∂R

∂z

)2
]1/2

∼= −PeRdθdz, (5)

(FO)z = Pe
∂R

∂z
Rdzdθ, (6)

respectively.
On surface BW, the contact force FBW acting on the vessel element by the adjacent

fluid can be decomposed into (FBW)r in the radial direction and (FBW )z in the axial
direction.

For the vessel element of radial velocity uwr = ∂R
∂t , the radial damping force (Fd)r

can be expressed in terms of the damping constant of the wall βw as

(Fd)r = −βw
∂R

∂t
Rdθdz, (7)

and the momentum of the vessel element in the radial direction (pw)r is given as

(pw)r =
∂R

∂t
ρwhwRdθdz. (8)

Taken all the forces into account, we obtain the momentum equation for the vessel element
in the radial direction as

d(pw)r
dt

= (FT )r + FS + FC + (FBW )r + (FO)r + (Fd)r, (9)

and the axial momentum equation for the vessel element with axial momentum (pw)z as

d(pw)z
dt

= (FT )z + (FBW )z + (FO)z. (10)

II-2. Momentum equations for the wedge-shaped fluid element

The fluid element (see Figure 2b) is in contact with the neighboring fluid (via surfaces
1, 2, 3, and 4 ) and the layer vessel (via surface BW). The Newton momentum equations
of this fluid element are also determined by the forces acting on these five surfaces and the
viscous force associated with its movement.

On surface 1 (at z) and surface 2 (at z + dz), the neighboring adjacent blood will
exert normal pressure forces Fb1 = Pi1R

2
1dθ/2 and Fb2 = Pi2R

2
2dθ/2 on the element. The

sum of these two forces is a net force (FP )z in the axial direction:

(FP )z = −1

2

(
R2∂Pi

∂z
+ Pi

∂R2

∂z

)
dθdz. (11)
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The area of surfaces 3 and 4 can be expressed as A3 = A4 = Rdz. Pressure forces Fb3 = A3Pi

and Fb4 = A4Pi acting normally on surface 3 and 4, respectively, by the adjacent fluid will
contribute a net force (FP )r in the radial direction:

(FP )r = (A3Pi +A4Pi) sin(dθ/2) = PiRdzdθ. (12)

On surface BW, the contact forces acting on the fluid system by the neighboring vessel
element in the radial and the axial direction are (FWB)r and (FWB)z, respectively.

Thus the momentum equations of the fluid element with radial momentum (pb)r and
axial momentum (pb)z can be written as

d(pb)r
dt

= (FP )r + (FWB)r + (Fv)r, (13)

d(pb)z
dt

= (FP )z + (FWB)z + (Fv)z. (14)

Here, (Fv)r and (Fv)z are the viscous force in the radial and the axial directions, respectively,
and

(Fv)r = −βb
∂R

∂t
Rdθdz, (15)

with βb as the viscous coefficient of the blood in the radial direction.
The momentum of the fluid element in the axial direction can be written as

(pb)z =

∫ r=R

r=0
ρbubzrdθdrdz, (16)

and the momentum of the fluid element in the radial direction can be written as

(pb)r =

∫ r=R

r=0
ρbubrrdθdrdz. (17)

Here ρb is the fluid density; ubz and ubr are the fluid velocity in the axial and the radial
directions, respectively. Near the contact surface, the radial velocity of the fluid and the
wall are continuous [15]; we may define hb as the equivalent thickness of the blood layer
that moves together with the wall with the wall velocity uwr. Hence, from Equation (17),
we have the momentum of the fluid element in the radial direction (pb)r as

(pb)r = ρbhbuwrRdθdz = ρbhb
∂R

∂t
Rdθdz. (18)

The value of hb depends on the radial velocity profile of the blood and is of the same order
as the Stokes layer [16].
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III. RESULT

Equations (9) and (10) are the general momentum equations for the vessel element,
while Equations (13) and (14) are those for the fluid elements. We may utilize these four
equations to derive the momentum equations in large arteries.

III-1. The generalized axial momentum equations for large arteries in vivo

In vivo, the arterial vessel is strongly constrained in the axial direction and the axial
motion of the wall is negligibly small [17]; which implies that d(pw)z/dt is zero. Hence, the
axial momentum equation for the vessel element (10) becomes as

d(pw)z/dt = (FT )z + (FBW )z + (FO)z = 0. (19)

Thus, by Newton’s third law, the axial component of the contact force acting on the blood
by the vessel (FWB)z can be expressed explicitly as

(FWB)z = −(FBW )z = (FT )z + (FO)z. (20)

Due to the axial symmetry, we may integrate Equation (14) over the angle θ, and by
Equation (20), a generalized momentum equation associated with the axial motion of the
blood is then given by

ρ
dQ

dt
= −πR2∂Pi

∂z
− Pi

∂(πR2)

∂z
+ Pe

∂(πR2)

∂z
− 2πRhwT

∂2R

∂z2
∂R

∂z
+ fvz (21)

Here the total fluid flux Q(z, t) at axial position z, or the volume rate of flow, is the
integration of the fluid axial velocity ubz across the lumen of the tube [2]. On the left hand
side, the spatial convective term is also included.

III-2. The radial momentum equations for large arteries in vivo

From the radial momentum equation of the fluid element (Equation (13)), the radial
component of the contact force acting on the blood by the arterial wall is

(FWB)r =
d(pb)r
dt

− (FP )r − (Fv)r.

And by Newton’s third law again, the radial component of the contact force (FBW )r acting
on the wall by the blood becomes

(FBW )r = −(FWB)r = −d(pb)r
dt

+ (FP )r + (Fv)r. (22)

Substituting Equation (22) into Equation (9), the momentum equation of the arterial wall
in the radial direction becomes

d(pw)r
dt

= −d(pb)r
dt

+ (FP )r + (FO)r + FC + (FT )r + FS + (Fd)r + (Fv)r. (23)
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By inserting Equations (18), (12), (5), (4), (2), (1), (7), and (15) into Equation (23), then
integrating over the angle θ we obtain the radial momentum equation of the arterial wall
as

ρwhw
∂2R

∂t2
+ ρbhb

∂2R

∂t2
= (Pi − Pe)−

hw
R
σθθ − (βw + βb)

∂R

∂t
+ hw(Tw +Erz)

∂2R

∂z2
. (24)

Without coupling with the axial momentum equation or the continuity equation of the
blood, a pressure wave equation follows directly from Equation (24) by using the chain rule
and the definition of Peterson’s elastic modulus, [18] EP = R(∂P/∂R),

ML
∂2P

∂t2
+ βL

∂P

∂t
− EP

R0
κL = τL

∂2P

∂z2
+
EP

R0
Fext(z, t), (25)

with

ML = 2πR(ρwhw + ρbhb), (26)

κL = 2πR

[
(Pi − Pe)−

hw
R
σθθ

]
, (27)

τL = 2πRhw(T + Erz), (28)

βL = 2πR(βw + βb). (29)

Here Fext(z, t) is any additional external force, such as the input from the heart. Equa-
tion (25) may be called the pressure-radius (PR) wave equation.

IV. DISCUSSION

Equations (21) and (24) are the two major momentum equations for large arteries
derived directly from Newton’s Law. We may compare these equations with other equations
in the literature which have been widely utilized to describe the arterial system.

IV-1. The deficiency of utilizing axial NS equation in large arteries

For most of the PQ wave models which take the NS equation of motion relevant to
the longitudinal blood flow as the primary momentum equation, the pressure gradient force
fPG = −πR2 ∂Pi

∂z on the right hand side of Equation (21) is the only lowest order term to

be considered, while the second term fiAG = −Pi
∂(πR2)

∂z has been neglected.
Equation (20) shows that, via the contacting surface BW, the surrounding external

pressure force fOZ = −Pe
∂(πR2)

∂z and the force associated with the longitudinal tension T

of the wall fTZ = −2πRhwT
∂2R
∂z2

∂R
∂z are acting on the blood. Since for all the PQ wave
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models, the arterial wall was taken only as the boundary of the blood system, these two
forces cannot be considered at the first step.

By combining the two forces associated with the area gradient, we may define the
area gradient force [19] as

fAG = fiAG + fOZ = −P ∂(πR
2)

∂z
= −2πRP

∂R

∂z
, (30)

with P (z, t) = Pi(z, t)− Pe(z).
By the Peterson elastic modulus [18] EP , the ratio of the area gradient force to the

pressure gradient force can be evaluated by

fAG

fPG
=

2P

EP
. (31)

For the large arteries in vivo [2, 3], the ratio of the area gradient force to the pressure
gradient force is more than 50%.

In a preliminary study [20], we have shown that for the nth harmonic mode of the
pressure wave the ratio of fTZ to fPG, or (fTZ/fPG)n ≈ −2n2% for n = 1, 2 ,3, . . . .

Both fAG and fTZ are unable to be taken into account if one starts from the NS
equation, and both of them are of comparable order with the major considered force term
fPG; this implies that the axial NS equation cannot describe realistically the blood motion
for large arteries in vivo.

IV-2. The inertial and the longitudinal extending stress terms shall be retained
simultaneously in the radial equation of motion for the vessel system

To derive solitary waves in large blood vessels, Yomosa [11] has coupled the NS
equation of motion relevant to the longitudinal flow with a radial equation of motion for
the arterial wall as follows:

ρwhw
∂2R

∂t2
= (Pi − Pe)−

hw
R
σθθ.

Defining σzz as the Cauchy stress tensor in the axial direction and u as the radial dis-
placement of the wall, Demiray [21] used σzz

∂2u
∂z2

to consider the force associated with the
longitudinal tension. Yet, to derive a solitary wave in a pre-stressed elastic tube, he dis-
carded the inertia term ρwhw

∂2R
∂t2

in the first order expansion solution.

According to Laplace’s law [22], (Pi − Pe) − hw
R σθθ ≈ 0, hence the inertial and the

longitudinal extending stress terms become the two most important non-zero terms, and
both of them should be retained in the radial equation of motion for the lowest order. As
a matter of fact, by retaining them simultaneously, we have obtained directly an ordinary
pressure wave equation (25).

IV-3. The PR wave equation is an improvement of the PS wave equation

In a previous study [6], we have derived a similar pressure-area (PS) wave equation
by taking the arterial wall and the blood together as one system, and an approximation
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that the thickness of the wall hw is constant was made. The present PR wave equation (25)
is derived from the radial momentum equations by taking the arterial wall and the blood
as two separate but mutual interacting systems, and, more accurately, Rhw is taken as
constant to follow the conservation law of the wall mass.

IV-4. The PR wave equation is the primary pressure wave equation in large
arteries

It was reported that axial fluid kinetic power takes only 2 to 7% of the total ventricular
output [23]. Thus, in terms of the relevance to the power, the induced axial blood flow
wave Q is only a minor parameter as compared with the induced pressure wave P or the
associated radial wave R in large arteries. Furthermore, since most of the side branch
arteries are connected perpendicularly to the axial direction of the main arteries [24], the
axial flow wave in large arteries is a passive effect, and better be reduced as regard to
the transportation of blood to the connected side branches [25]. Hence, the PR wave
equation (25) is the primary pressure wave equation in large arteries.

IV-5. The PR wave equation makes the study of blood-vessel interaction sim-
pler

The PR wave equation has been derived with only the assumption that the artery is
of rotational symmetry; it is applicable to arteries which are curved, bifurcate, and have
nonlinear elastic properties. The method for solving the PR wave equation is similar to that
of solving the transverse string wave or the EM wave; only the sites that have discontinuity
in wave velocity shall be counted as connecting sites. The boundary conditions at the
connecting sites refer to the pressure only and not to the flow, while the axial flow Q can be
obtained afterwards by substituting the pressure wave P into the generalized momentum
equation (21) for the axial motion of the blood. This approach makes the study of the
arterial fluid-structure interaction (FSI) simpler, since we need not solve the complicated
boundary value problems associated with both the pressure and the flow along the whole
arterial tube.

IV-6. The PR wave equation can be used as a basis for developing quantitative
methods to study the arterial system in a collective manner

It was found that almost all of the work done in distending the arteries is returned
later in each cycle of the heart beat, due to the relatively small viscosity of the vascular
wall [2, 3, 26]. Hence we may deduce that the magnitude of βL in Equation (25) for large
arteries is small enough to cause only a light damping for the radial oscillatory motion.
The low dissipation character of the PR wave equation not only lowers the loading of the
heart, it also makes the resonance behavior [27, 28] of the main arterial system feasible, so
that the ventricular-arterial system can perform collectively.

We thus conclude that, due to the strong interaction between the arterial wall and the
enclosed blood, starting directly from Newton’s law and not from the NS equations is a must
method for the hemodynamic studies. The resultant realistic PR wave equation (25) can be
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used as a basis for developing quantitative methods [7–10] to cure cardiovascular diseases in
a collective manner, such as the diagnose and treatment in the traditional Chinese medicine.
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